Search results for "Neuronal activity"

showing 10 items of 100 documents

Nitric oxide modulates striatal neuronal activity via soluble guanylyl cyclase: an in vivo microiontophoretic study in rats.

2003

It is now well established that nitric oxide (NO) acts as a neuromodulator in the central nervous system. To assess the role of NO in modulating striatal activity, single-unit recording was combined with iontophoresis to study presumed spiny projection neurons in urethane-anesthetized male rats. Striatal neurons recorded were essentially quiescent and were therefore activated to fire by the iontophoretic administration of glutamate, pulsed in cycles of 30 sec on and 40 sec off. In this study, iontophoresis of 3-morpholinosydnonimine hydrochloride (SIN 1), a nitric oxide donor, produced reproducible, current-dependent inhibition of glutamate-induced excitation in 12 of 15 striatal neurons, r…

MaleAction PotentialsReceptors Cytoplasmic and NuclearPharmacologyMedium spiny neuronNitric OxideNitric oxideCellular and Molecular Neurosciencechemistry.chemical_compoundSoluble Guanylyl CyclasePremovement neuronal activityAnimalsRats WistarCyclic guanosine monophosphateNeuronsbiologyIontophoresisGlutamate receptorIontophoresisCorpus StriatumRatsNitric oxide synthasenervous systemchemistryBiochemistrySolubilityGuanylate CyclaseMolsidominebiology.proteinSoluble guanylyl cyclaseSynapse (New York, N.Y.)
researchProduct

Putative Role of Taurine as Neurotransmitter During Perinatal Cortical Development

2017

Neurotransmitters and neuronal activity affect neurodevelopmental events like neurogenesis, neuronal migration, apoptosis and differentiation. Beside glutamate and gamma-amino butyric acid, the aminosulfonic acid taurine has been considered as possible neurotransmitter that influences early neuronal development. In this article I review recent studies of our group which demonstrate that taurine can affect a variety of identified neuronal populations in the immature neocortex and directly modulates neuronal activity. These experiments revealed that taurine evoke dose-dependent membrane responses in a variety of neocortical neuron populations, including Cajal-Retzius cells, subplate neurons a…

0301 basic medicineTaurineNeocortexGlutamate receptor03 medical and health scienceschemistry.chemical_compound030104 developmental biology0302 clinical medicinemedicine.anatomical_structurenervous systemchemistryPostsynaptic potentialmedicineGABAergicPremovement neuronal activityNeuronGlycine receptorNeuroscience030217 neurology & neurosurgery
researchProduct

Salsolinol and ethanol-derived excitation of dopamine mesolimbic neurons: new insights

2013

Evidence supporting the essential role of brain-derived ethanol metabolites in the excitation of dopamine (DA) midbrain neurons has multiplied in the last 10–15 years. The pioneer and influential behavioral studies by CM Aragon and colleagues (see Correa et al., 2012 for a complete review) and more recent data (Sanchez-Catalan et al., 2009; Marti-Prats et al., 2010, 2013) have repeatedly demonstrated the crucial role displayed by acetaldehyde (ACD) in the locomotor and other behavioral responses elicited by ethanol. Although these experiments mainly used an indirect measure (exploratory locomotion) as an index of the excitation of DA neurons in the ventral tegmental area (VTA), results stro…

Cognitive NeuroscienceAcetaldehydeStriatumInhibitory postsynaptic potentiallcsh:RC321-571Behavioral NeuroscienceGlutamatergicDopaminemedicinePremovement neuronal activitylcsh:Neurosciences. Biological psychiatry. NeuropsychiatryGeneral Commentary ArticleSalsolinolElectrophysiologyVentral tegmental areaµ-Opioid ReceptorsElectrophysiologyNeuropsychology and Physiological Psychologymedicine.anatomical_structurenervous systemHypothalamusDopamine Midbrain NeuronsPsychologyNeuroscienceNeurosciencemedicine.drugFrontiers in Behavioral Neuroscience
researchProduct

Chapter 8 Nicotinic receptors of the vertebrate CNS: introductory remarks

1996

Publisher Summary This chapter focuses on the nicotinic receptors of the vertebrate central nervous system (CNS). In vertebrates, nicotinic cholinergic neurotransmission is found in both the CNS and the periphery (muscle endplate). Although muscle and neuronal nicotinic acetylcholine receptors (nAChR) have evolved from a common ancestor, it is striking that the muscle receptor has remained rather stable in evolution, whereas the neuronal receptor has evolved to a wide diversity of subtypes. As an attractive hypothesis, neurotransmitters and neurohormones may not only interact with their archetypic cognate receptors but also with other neuroreceptor, albeit in a modulatory fashion. By modula…

Nicotinic agonistmedicine.anatomical_structureCentral nervous systemAllosteric regulationmedicinePremovement neuronal activityBiologyReceptorNeurohormonesNeuroscienceCoincidence detection in neurobiologyAcetylcholine receptor
researchProduct

The endocannabinoid system controls key epileptogenic circuits in the hippocampus.

2006

SummaryBalanced control of neuronal activity is central in maintaining function and viability of neuronal circuits. The endocannabinoid system tightly controls neuronal excitability. Here, we show that endocannabinoids directly target hippocampal glutamatergic neurons to provide protection against acute epileptiform seizures in mice. Functional CB1 cannabinoid receptors are present on glutamatergic terminals of the hippocampal formation, colocalizing with vesicular glutamate transporter 1 (VGluT1). Conditional deletion of the CB1 gene either in cortical glutamatergic neurons or in forebrain GABAergic neurons, as well as virally induced deletion of the CB1 gene in the hippocampus, demonstrat…

MaleVesicular glutamate transporter 1HUMDISEASEHippocampusGene ExpressionHippocampal formationHippocampusMembrane Potentialschemistry.chemical_compoundMice0302 clinical medicineReceptor Cannabinoid CB1Premovement neuronal activitygamma-Aminobutyric Acid0303 health sciencesKainic AcidbiologyBehavior AnimalReverse Transcriptase Polymerase Chain Reactionmusculoskeletal neural and ocular physiologyGeneral NeurosciencePyramidal CellsCalcium Channel BlockersEndocannabinoid systemlipids (amino acids peptides and proteins)psychological phenomena and processesmedicine.drugKainic acidNeuroscience(all)MorpholinesGlutamic AcidMice TransgenicNaphthalenesMOLNEUROgamma-Aminobutyric acid03 medical and health sciencesGlutamatergicCannabinoid Receptor ModulatorsmedicineAnimals030304 developmental biologyAnalysis of VarianceEpilepsyBenzoxazinesMice Inbred C57BLnervous systemchemistryCalcium-Calmodulin-Dependent Protein KinasesVesicular Glutamate Transport Protein 1biology.proteinNerve NetSYSNEUROCalcium-Calmodulin-Dependent Protein Kinase Type 2Neuroscience030217 neurology & neurosurgeryEndocannabinoidsNeuron
researchProduct

Neuronal populations mediating the effects of endocannabinoids on stress and emotionality

2011

An adequate emotional response to stress is essential for survival and requires the fine-tuned regulation of several distinct neuronal circuits. Therefore, a precise control of these circuits is necessary to prevent behavioral imbalances. During the last decade, numerous investigations have evidenced that the endocannabinoid (eCB) system is able to crucially control stress coping. Its central component, the cannabinoid type 1 receptor (CB1 receptor), is located at the presynapse, where it is able to attenuate neurotransmitter release after its activation by postsynaptically produced and released eCBs. To date, the eCB system has been found to control the neurotransmitter release from severa…

NeuronsHypothalamo-Hypophyseal SystemGeneral NeuroscienceEmotionsGlutamate receptorPituitary-Adrenal SystemContext (language use)Endocannabinoid systemAmygdalaPresynapsemedicine.anatomical_structureReceptor Cannabinoid CB1nervous systemStress PhysiologicalCannabinoid Receptor ModulatorsSynapsesmedicineAnimalsLocus coeruleusPremovement neuronal activityPsychologyPrefrontal cortexNeuroscienceStress PsychologicalEndocannabinoidsNeuroscience
researchProduct

Neuronal Activity Drives Localized Blood-Brain-Barrier Transport of Serum Insulin-like Growth Factor-I into the CNS

2010

Upon entry into the central nervous system (CNS), serum insulin-like growth factor-1 (IGF-I) modulates neuronal growth, survival, and excitability. Yet mechanisms that trigger IGF-I entry across the blood-brain barrier remain unclear. We show that neuronal activity elicited by electrical, sensory, or behavioral stimulation increases IGF-I input in activated regions. Entrance of serum IGF-I is triggered by diffusible messengers (i.e., ATP, arachidonic acid derivatives) released during neurovascular coupling. These messengers stimulate matrix metalloproteinase-9, leading to cleavage of the IGF binding protein-3 (IGFBP-3). Cleavage of IGFBP-3 allows the passage of serum IGF-I into the CNS thro…

Central Nervous SystemTime FactorsMicrodialysismedicine.medical_treatmentAction PotentialsStimulationFunctional LateralityBody TemperatureReceptor IGF Type 1chemistry.chemical_compoundNeural PathwaysPremovement neuronal activityDrug InteractionsInsulin-Like Growth Factor IMicroscopy ImmunoelectronReceptorCells CulturedNeuronsGeneral NeuroscienceSysneuro//purl.org/becyt/ford/3.1 [https]Protein TransportMedicina Básicamedicine.anatomical_structureMatrix Metalloproteinase 9Blood-Brain BarrierSIGNALING//purl.org/becyt/ford/3 [https]Arachidonic acidNeurogliaLow Density Lipoprotein Receptor-Related Protein-1CIENCIAS MÉDICAS Y DE LA SALUDNeuroscience(all)Central nervous systemNeurocienciasBiophysicsGlutamic AcidEnzyme-Linked Immunosorbent AssayNerve Tissue ProteinsBiologyBlood–brain barrierMOLNEUROmedicineAnimalsHumansImmunoprecipitationRats WistarAnalysis of VarianceGrowth factorEndothelial CellsTransporterCoculture TechniquesElectric StimulationSignalingRatsMolneurochemistryRegional Blood FlowVibrissaeSYSNEURODigoxigeninExcitatory Amino Acid AntagonistsNeuroscience
researchProduct

Modulation of Neocortical Development by Early Neuronal Activity: Physiology and Pathophysiology.

2017

Animal and human studies revealed that patterned neuronal activity is an inherent feature of developing nervous systems. This review summarizes our current knowledge about the mechanisms generating early electrical activity patterns and their impact on structural and functional development of the cerebral cortex. All neocortical areas display distinct spontaneous and sensory-driven neuronal activity patterns already at early phases of development. At embryonic stages, intermittent spontaneous activity is synchronized within small neuronal networks, becoming more complex with further development. This transition is accompanied by a gradual shift from electrical to chemical synaptic transmiss…

0301 basic medicinesomatosensory cortexReviewBiologylcsh:RC321-57103 medical and health sciencesCellular and Molecular Neurosciencechemistry.chemical_compound0302 clinical medicineSubplatemedicinePremovement neuronal activityhumanddc:610Neurotransmitterlcsh:Neurosciences. Biological psychiatry. Neuropsychiatrydevelopmentspontaneous activityNeocortexGlutamate receptorrodentChemical synaptic transmission030104 developmental biologymedicine.anatomical_structureElectrical SynapseschemistryCerebral cortexsubplatecerebral cortexNeuroscience030217 neurology & neurosurgeryNeuroscience
researchProduct

TMS-EEG signatures of glutamatergic neurotransmission in human cortex

2019

AbstractNeuronal activity in the brain is regulated by an excitation-inhibition balance. Glutamate is the main excitatory neurotransmitter. Transcranial magnetic stimulation (TMS) evoked electroencephalographic (EEG) potentials (TEPs) represent a novel way to quantify pharmacological effects on neuronal activity in the human cortex. Here we tested TEPs under the influence of a single oral dose of two anti-glutamatergic drugs, perampanel, an AMPA-receptor antagonist, and dextromethorphan, an NMDA-receptor antagonist, and nimodipine, an L-type voltage-gated calcium channel blocker in 16 healthy adults in a pseudorandomized, double-blinded, placebo-controlled, crossover design. Single-pulse TM…

medicine.diagnostic_testbusiness.industrymedicine.medical_treatmentGlutamate receptorElectroencephalographyNeurotransmissionTranscranial magnetic stimulationGlutamatergicPerampanelchemistry.chemical_compoundmedicine.anatomical_structurechemistrynervous systemCortex (anatomy)medicinePremovement neuronal activitybusinessNeuroscience
researchProduct

Activity-Dependent Regulation of Neuronal Apoptosis in Neonatal Mouse Cerebral Cortex

2007

A massive neuronal loss during early postnatal development has been well documented in the murine cerebral cortex, but the factors that drive cells into apoptosis are largely unknown. The role of neuronal activity in developmental apoptosis was studied in organotypic neocortical slice cultures of newborn mice. Multielectrode array and whole-cell patch-clamp recordings revealed spontaneous network activity characterized by synchronized burst discharges, which could be blocked by tetrodotoxin and ionotropic glutamate receptor antagonists. The identical neuropharmacological manipulations also caused a significant increase in the number of apoptotic neurons as early as 6 h after the start of dr…

Cerebral CortexNeuronsMice Inbred BALB CNeocortexCognitive NeuroscienceGlutamate receptorAction PotentialsApoptosisBiologyReceptors N-Methyl-D-AspartateNeuroprotectionMiceCellular and Molecular NeuroscienceOrgan Culture Techniquesmedicine.anatomical_structureAnimals NewbornCerebral cortexTrk receptormedicineAnimalsNMDA receptorPremovement neuronal activityNeuroscienceIonotropic effectCerebral Cortex
researchProduct